metabelian, supersoluble, monomial
Aliases: C33⋊7D8, C32⋊10D24, C12.26S32, (C3×D12)⋊3S3, D12⋊1(C3⋊S3), C32⋊4C8⋊8S3, (C3×C6).78D12, C3⋊2(C3⋊D24), C32⋊6(D4⋊S3), (C3×C12).113D6, (C32×D12)⋊4C2, C33⋊12D4⋊2C2, C3⋊1(C32⋊7D8), (C32×C6).30D4, C6.1(C32⋊7D4), C2.4(C33⋊7D4), C6.22(C3⋊D12), (C32×C12).9C22, C4.8(S3×C3⋊S3), C12.30(C2×C3⋊S3), (C3×C32⋊4C8)⋊2C2, (C3×C6).56(C3⋊D4), SmallGroup(432,437)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C33⋊7D8
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, dad-1=eae=a-1, bc=cb, dbd-1=ebe=b-1, cd=dc, ece=c-1, ede=d-1 >
Subgroups: 1672 in 196 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, C8, D4, C32, C32, C32, C12, C12, C12, D6, C2×C6, D8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, D12, D12, C3×D4, C33, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C62, D24, D4⋊S3, S3×C32, C33⋊C2, C32×C6, C3×C3⋊C8, C32⋊4C8, C3×D12, C12⋊S3, D4×C32, C32×C12, S3×C3×C6, C2×C33⋊C2, C3⋊D24, C32⋊7D8, C3×C32⋊4C8, C32×D12, C33⋊12D4, C33⋊7D8
Quotients: C1, C2, C22, S3, D4, D6, D8, C3⋊S3, D12, C3⋊D4, S32, C2×C3⋊S3, D24, D4⋊S3, C3⋊D12, C32⋊7D4, S3×C3⋊S3, C3⋊D24, C32⋊7D8, C33⋊7D4, C33⋊7D8
(1 50 58)(2 59 51)(3 52 60)(4 61 53)(5 54 62)(6 63 55)(7 56 64)(8 57 49)(9 20 40)(10 33 21)(11 22 34)(12 35 23)(13 24 36)(14 37 17)(15 18 38)(16 39 19)(25 45 72)(26 65 46)(27 47 66)(28 67 48)(29 41 68)(30 69 42)(31 43 70)(32 71 44)
(1 38 29)(2 30 39)(3 40 31)(4 32 33)(5 34 25)(6 26 35)(7 36 27)(8 28 37)(9 43 52)(10 53 44)(11 45 54)(12 55 46)(13 47 56)(14 49 48)(15 41 50)(16 51 42)(17 57 67)(18 68 58)(19 59 69)(20 70 60)(21 61 71)(22 72 62)(23 63 65)(24 66 64)
(1 41 18)(2 42 19)(3 43 20)(4 44 21)(5 45 22)(6 46 23)(7 47 24)(8 48 17)(9 60 31)(10 61 32)(11 62 25)(12 63 26)(13 64 27)(14 57 28)(15 58 29)(16 59 30)(33 53 71)(34 54 72)(35 55 65)(36 56 66)(37 49 67)(38 50 68)(39 51 69)(40 52 70)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(1 7)(2 6)(3 5)(9 72)(10 71)(11 70)(12 69)(13 68)(14 67)(15 66)(16 65)(17 48)(18 47)(19 46)(20 45)(21 44)(22 43)(23 42)(24 41)(25 40)(26 39)(27 38)(28 37)(29 36)(30 35)(31 34)(32 33)(49 57)(50 64)(51 63)(52 62)(53 61)(54 60)(55 59)(56 58)
G:=sub<Sym(72)| (1,50,58)(2,59,51)(3,52,60)(4,61,53)(5,54,62)(6,63,55)(7,56,64)(8,57,49)(9,20,40)(10,33,21)(11,22,34)(12,35,23)(13,24,36)(14,37,17)(15,18,38)(16,39,19)(25,45,72)(26,65,46)(27,47,66)(28,67,48)(29,41,68)(30,69,42)(31,43,70)(32,71,44), (1,38,29)(2,30,39)(3,40,31)(4,32,33)(5,34,25)(6,26,35)(7,36,27)(8,28,37)(9,43,52)(10,53,44)(11,45,54)(12,55,46)(13,47,56)(14,49,48)(15,41,50)(16,51,42)(17,57,67)(18,68,58)(19,59,69)(20,70,60)(21,61,71)(22,72,62)(23,63,65)(24,66,64), (1,41,18)(2,42,19)(3,43,20)(4,44,21)(5,45,22)(6,46,23)(7,47,24)(8,48,17)(9,60,31)(10,61,32)(11,62,25)(12,63,26)(13,64,27)(14,57,28)(15,58,29)(16,59,30)(33,53,71)(34,54,72)(35,55,65)(36,56,66)(37,49,67)(38,50,68)(39,51,69)(40,52,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,7)(2,6)(3,5)(9,72)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(49,57)(50,64)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58)>;
G:=Group( (1,50,58)(2,59,51)(3,52,60)(4,61,53)(5,54,62)(6,63,55)(7,56,64)(8,57,49)(9,20,40)(10,33,21)(11,22,34)(12,35,23)(13,24,36)(14,37,17)(15,18,38)(16,39,19)(25,45,72)(26,65,46)(27,47,66)(28,67,48)(29,41,68)(30,69,42)(31,43,70)(32,71,44), (1,38,29)(2,30,39)(3,40,31)(4,32,33)(5,34,25)(6,26,35)(7,36,27)(8,28,37)(9,43,52)(10,53,44)(11,45,54)(12,55,46)(13,47,56)(14,49,48)(15,41,50)(16,51,42)(17,57,67)(18,68,58)(19,59,69)(20,70,60)(21,61,71)(22,72,62)(23,63,65)(24,66,64), (1,41,18)(2,42,19)(3,43,20)(4,44,21)(5,45,22)(6,46,23)(7,47,24)(8,48,17)(9,60,31)(10,61,32)(11,62,25)(12,63,26)(13,64,27)(14,57,28)(15,58,29)(16,59,30)(33,53,71)(34,54,72)(35,55,65)(36,56,66)(37,49,67)(38,50,68)(39,51,69)(40,52,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,7)(2,6)(3,5)(9,72)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(49,57)(50,64)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58) );
G=PermutationGroup([[(1,50,58),(2,59,51),(3,52,60),(4,61,53),(5,54,62),(6,63,55),(7,56,64),(8,57,49),(9,20,40),(10,33,21),(11,22,34),(12,35,23),(13,24,36),(14,37,17),(15,18,38),(16,39,19),(25,45,72),(26,65,46),(27,47,66),(28,67,48),(29,41,68),(30,69,42),(31,43,70),(32,71,44)], [(1,38,29),(2,30,39),(3,40,31),(4,32,33),(5,34,25),(6,26,35),(7,36,27),(8,28,37),(9,43,52),(10,53,44),(11,45,54),(12,55,46),(13,47,56),(14,49,48),(15,41,50),(16,51,42),(17,57,67),(18,68,58),(19,59,69),(20,70,60),(21,61,71),(22,72,62),(23,63,65),(24,66,64)], [(1,41,18),(2,42,19),(3,43,20),(4,44,21),(5,45,22),(6,46,23),(7,47,24),(8,48,17),(9,60,31),(10,61,32),(11,62,25),(12,63,26),(13,64,27),(14,57,28),(15,58,29),(16,59,30),(33,53,71),(34,54,72),(35,55,65),(36,56,66),(37,49,67),(38,50,68),(39,51,69),(40,52,70)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(1,7),(2,6),(3,5),(9,72),(10,71),(11,70),(12,69),(13,68),(14,67),(15,66),(16,65),(17,48),(18,47),(19,46),(20,45),(21,44),(22,43),(23,42),(24,41),(25,40),(26,39),(27,38),(28,37),(29,36),(30,35),(31,34),(32,33),(49,57),(50,64),(51,63),(52,62),(53,61),(54,60),(55,59),(56,58)]])
51 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | ··· | 3E | 3F | 3G | 3H | 3I | 4 | 6A | ··· | 6E | 6F | 6G | 6H | 6I | 6J | ··· | 6Q | 8A | 8B | 12A | 12B | 12C | ··· | 12N | 24A | 24B | 24C | 24D |
order | 1 | 2 | 2 | 2 | 3 | ··· | 3 | 3 | 3 | 3 | 3 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 8 | 8 | 12 | 12 | 12 | ··· | 12 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 12 | 108 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 12 | ··· | 12 | 18 | 18 | 2 | 2 | 4 | ··· | 4 | 18 | 18 | 18 | 18 |
51 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | S3 | S3 | D4 | D6 | D8 | D12 | C3⋊D4 | D24 | S32 | D4⋊S3 | C3⋊D12 | C3⋊D24 |
kernel | C33⋊7D8 | C3×C32⋊4C8 | C32×D12 | C33⋊12D4 | C32⋊4C8 | C3×D12 | C32×C6 | C3×C12 | C33 | C3×C6 | C3×C6 | C32 | C12 | C32 | C6 | C3 |
# reps | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 5 | 2 | 2 | 8 | 4 | 4 | 4 | 4 | 8 |
Matrix representation of C33⋊7D8 ►in GL8(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 71 | 70 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 71 | 70 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
12 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 29 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
33 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 |
G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,71,1,0,0,0,0,0,0,70,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,71,1,0,0,0,0,0,0,70,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0],[12,8,0,0,0,0,0,0,16,29,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,33,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72] >;
C33⋊7D8 in GAP, Magma, Sage, TeX
C_3^3\rtimes_7D_8
% in TeX
G:=Group("C3^3:7D8");
// GroupNames label
G:=SmallGroup(432,437);
// by ID
G=gap.SmallGroup(432,437);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,92,254,58,571,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e=a^-1,b*c=c*b,d*b*d^-1=e*b*e=b^-1,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations